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a b s t r a c t

We present a stable and convergent method for studying a system of gas and dust, coupled
through viscous drag in both non-stiff and stiff regimes. To account for the effects of dust
drag in the update of the fluid quantities, we employ a fluid description of the dust com-
ponent and study the modified gas-dust hyperbolic system following the approach in Mini-
ati and Colella [19]. In addition to two entropy waves for the gas and dust components,
respectively, the extended system includes three waves driven partially by gas pressure
and partially by dust drift, which, in the limit of vanishing coupling, tend to the two origi-
nal acoustic waves and the unhindered dust streaming. Based on this analysis we formu-
late a predictor step providing first order accurate reconstruction of the time-averaged
state variables at cell interfaces, whence a second order accurate estimate of the conserva-
tive fluxes can be obtained through a suitable linearized Riemann solver. The final source
term update is carried out using a one-step, second order accurate, L-stable, predictor cor-
rector asymptotic method (the a-QSS method suggested by Mott et al. [21]). This procedure
completely defines a two-fluid method for gas-dust system. Using the updated fluid solu-
tion allows us to then advance the individual particle solutions, including self-consistently
the time evolution of the gas velocity in the estimate of the drag force. This is done with a
suitable particle scheme also based on the a-QSS method. A set of benchmark problems
shows that our method is stable and convergent. When dust is modeled as a fluid (two-
fluid) second order accuracy is achieved in both stiff and non-stiff regimes, whereas when
dust is modeled with particles (hybrid) second order is achieved in the non-stiff regime and
first order otherwise.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We wish to solve the system of partial differential equations describing two systems coupled through the exchange of
momentum through a viscous term proportional to their relative velocity. This situation characterizes a variety of problems,
among others gas–dust coupling in protoplanetary disks, the motion of polymer molecules in biological fluids [26], drift of
different ion species in the planetary plasma [5]. We are interested in addressing the case in which the viscous coupling
becomes stiff, such that the relaxation time characterizing it is significantly shorter than the smallest timescale character-
izing the fluid system, typically defined as sound crossing time of a resolution element. Although the results presented in this
paper can possibly be extended to other physical systems as those mentioned above, in the following we specialized
our analysis to the case of a gaseous and a dust component, coupled through a drag term as well as gravity, typical of a
protoplanetary disk.
. All rights reserved.
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Without loss of generality we start considering the problem in one dimension. The gas component is described by the
equations of hydrodynamics with a suitable source term, namely
@U
@t
þ @FðUÞ

@x
¼ SðUÞ; ð1Þ
where
U ¼
qg

qgug

qgE

0B@
1CA; FðUÞ ¼

qgug

qgu2
g þ P

ug ½qEþ P�

0B@
1CA; SðUÞ ¼

0
qgðfd �r/Þ

ugqgðfd �r/Þ

0B@
1CA: ð2Þ
The fluid quantities (with subscript g for gas) have their usual meaning, whereas fd and �r/ describe drag and gravitational
acceleration, respectively, which will be specified below. The dust particles move along the following trajectories in phase-
space
dxd

dt
¼ vd; ð3Þ

dvd

dt
¼ �jd ðvd � ugÞ � r/; ð4Þ
where, xd and vd are the dust particles position and velocity, respectively. We consider particles sizes that are small com-
pared to the gas particle mean free path (Epstein’s regime) so that the drag coefficient is
jd ¼ j0qgc; j0 �
1

q̂ds
: ð5Þ
Here, q̂d and s indicate the dust grain’s mass density and size, respectively, and c is the gas speed of sound. As shown below
(Section 3.1), the back-reaction exerted by the dust particles on the gas in Eq. (2), takes the form
fd ¼ �jgðug � udÞ; jg ¼ j0qdc; ð6Þ

where ud is the average dust velocity in the neighborhood of the considered fluid element, also to be defined below. Eqs. (5)
and (6) indicate that the dust-gas coupling coefficients become very large in the limit of either/both small grain sizes or/and
large dust density. In this case the relaxation between gas and dust is fast compared to the sound crossing time, which leads
to numerically stiff conditions. In addition, in the case of large dust densities, the dust back-reaction on the gas dynamics is
considerable and needs to be accounted for accurately.

In addition to the stiff conditions mentioned above, the problem is complicated by the fact that on the one hand the dust
particles are collisionless and therefore best described with a particle method in phase-space. However, in the stiff regime,
the particles effectively interact on a short timescale not only with the surrounding gas but also with the surrounding par-
ticles. Taking into account such interactions using directly a particle description complicates considerably the problem, to a
level that in fact is not tractable.

In this paper, we formulate an algorithm to address such a problem. In particular, for the purpose of modeling efficiently
the effects of the drag force by the dust particles on the fluid, we first obtain fluid description of the dust particle component,
using a particle–mesh method. We then define an extended conservative system that includes both the gas and dust vari-
ables. This systems is advanced one time-step following a method which is an extension of the one described in Miniati and
Colella [19]. More specifically, we use the fluid description of the dust to account for the modifications of the drag terms on
the hyperbolic structure of the gas equations. This allows us to formulate a predictor step that gives first order accurate
reconstruction of the time-averaged state variables at cell interfaces, whence a second order accurate estimates of the con-
servative fluxes can be obtained. With the dust component still described as a fluid, and a second order estimate of the fluxes
for our extended conservative system, the source update is finally carried out using a one-step, second order accurate, pre-
dictor corrector asymptotic method as suggested by Mott et al. [21]. At the end of this procedure we have obtained a fluid
solution that includes self-consistently the collective effect of the particles drag on the fluid.

We can then update the individual particle solutions using a suitable particle scheme that follows the particles along their
characteristic trajectories in phase-space, taking into account the effect of drag from the fluid. The above knowledge of the
fluid solution at the current and next time-step is crucial, however, to include self-consistently the time evolution of the gas
velocity in the estimate of the drag force.

Finally, dust and gas are also coupled through gravity. However, this can be achieved in the standard way (e.g. [19]),
namely by applying to both dust and gas components the gradient of their cumulative potential, /, defined by the following
Poisson’s equation
r2/ ¼ �4pGðqg þ qdÞ: ð7Þ
Several codes have already been published in the literature in order to study the coupled dust–gas–dynamics in protoplan-
etary disks. Among others, numerical codes based on the smoothed particle hydrodynamics method (SPH) approach have
been developed for multifluid system [20,3,16], in addition to the simpler case in which dust is treated as a test particle
and backreaction is neglected [24]. Grid based two-fluid methods have been around for a long time [8]. More recently they
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have been extended to the MHD case [11], and to one-fluid models in which dust and gas are perfectly coupled [2]. Grid
based hybrid (fluid + particles) methods have also been developed, including higher oder (sixth) spectral methods [14]
and higher order (second) Godunov’s method [1]. The novelty of our method consists in its ability to handle a variety of
numerically stiff conditions both in the two-fluid and hybrid approaches. This is relevant because in a realistic setting stiff
conditions arise in limited regions of a system and at a certain point in time during its evolution.

This paper is organized as follows. In Section 2. the particle integration scheme is presented. In Section 3 we describe the
two-fluid approach that allows us to update the fluid solution one time step. This section, therefore includes a description of
the methods for the fluid treatment of the dust component, the details of the semi-implicit predictor–corrector used for the
source update. In Section 4 we present the Godunov predictor step, derive the characteristic analysis and provide a linearized
Riemann solver, for the extended gas–dust fluid system. The stability of the method is addressed in Section 5. Accuracy and
convergence tests are presented in Section 6 and a summary with discussion in Section 7 concludes the paper.

2. Particle integration scheme

The particle positions and velocities is updated with a predictor corrector method based on a variant of the Quasi-Steady-
State method proposed by Mott et al. (the so called a-QSS [21]). Because we use this scheme extensively in this paper, we
first describe it briefly in the following.

Consider the first order ordinary differential equation (ODE)
dy
dt
¼ �pðt; yÞyþ qðt; yÞ; ð8Þ

yðt0Þ ¼ y0; ð9Þ
with y 2 R; p; q : R� R! R.
If p and q are constants, the above system has the following exact solution given by Duhamel’s formula,
yðtÞ ¼ y0e�pt þ q
p
ð1� e�ptÞ: ð10Þ
QSS methods are based on the asymptotic behavior of the above solution. When p and q depend on ðy; tÞ; a first order algo-
rithm can be obtained by setting p ¼ p0 � pðt0Þ; q ¼ q0 � qðt0Þ. This approach corresponds to the simplest QSS method and
can be used to develop higher order methods by incorporating to some degree the time dependence of p; q into the solution.
All QSS methods, however, reproduce the exact solution as p; q become constant. There are several QSS derived methods in
the literature (cf. [23] for a review). Here we shall adopt the a-QSS method of Mott et al. [21]. This is a single-step, second
order accurate, A-stable predictor–corrector method that can be summarized with the following procedure:
~yðt0 þ DtÞ ¼ y0 þ Dt
q0 � p0y0

1þ aðp0DtÞp0Dt
; ð11Þ

yðt0 þ DtÞ ¼ y0 þ Dt
q� � �py0

1þ að�pDtÞ�pDt
; ð12Þ

q� ¼ q0 þ að�pDtÞ½qð~y; t0 þ DtÞ � q0�; ð13Þ

aðxÞ ¼
1� 1�e�x

x

1� e�x
; �p ¼ p0 þ pð~y; t0 þ DtÞ

2
: ð14Þ
Eqs. (11) and (12) correspond to the predictor and corrector step respectively. In addition to the case where p; q are con-
stants, the above algorithm also returns the exact solution when p is constant and q is linear in time or p is linear in time
and q ¼ 0 [21].

In the following we derive a predictor–corrector algorithm based on Eqs. 11 and 12 to integrate the equation of motion of
the dust particles given by (3) and (4). In the absence of drag it effectively reduces to a kick–drift–kick variant of the leapfrog
scheme. For its derivation we assume that the gas velocity solution, vg , has already been computed by the fluid scheme de-
scribed below, at both tn and tnþ1 ¼ tn þ Dt. The drag coefficient in (4) is a function of the gas density and sound speed and is
interpolated at the particle position with a particle–mesh method, i.e.
jdðxpÞ ¼
X

p

w½xp � xðiÞ�jdðiÞ; ð15Þ
where wðsÞ is a weight function, xðiÞ, is the i-th cell’s center, and the summation is carried out over all cells. The velocity of
the gas entering Eq. (4) must also be obtained by way of interpolation. By using the following expression
vgðxpÞ ¼
1

jdðxpÞ
X

p

w½xp � xðiÞ�jdðiÞugðiÞ; ð16Þ
total dust + gas momentum is conserved by construction in the non-stiff limit, and simple tests show that it is also conserved
with high accuracy in the stiff regime.
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We now present the algorithm, but a more detailed description of its derivation is provided in Appendix A. We first pre-
dict the particle position at tnþ1 as
~xd ¼ xn
d þ b jn

dDt
� �

vn
dDt þ ½1� b jn

dDt
� �

�vn
gDt þ 1

2
r/nDt2; ð17Þ
where bðxÞ ¼ 1�e�x

x . As the particle travels from xn
d to ~xd the gas velocity changes from vn

g ¼ vg xn
d

� �
to vnþ1

g ¼ vg ~xdð Þ. Since the
above change is partially due to drag relaxation and partially due to the motion of the particles across a velocity gradient, we
assume that the velocity experienced by the particle evolves as follows:
vgðtÞ ¼ vn
g þ Dvg e�jgDt t

Dt
þ 1� e�jg t

� �
; ð18Þ
where, Dvg � vnþ1
g � vn

g . The above expression allows for a relaxation of the gas velocity towards the value vnþ1
g much faster

then linear, which is important in the stiff case ðjgDt � 1Þ. For the stiff case, this introduces some differences in our inte-
gration scheme with respect to the pure a-QSS method.

With the assumption of Eq. (18) we can carry out the time integration of the equation of motions for the particle velocity
and position. In doing so, as in the a-QSS approach, we replace the time dependent drag coefficients with their time averages,
that is the average between the values at position xn

d and ~xd;js ! �js ¼ js xn
d

� �
þ jsð~xdÞ

� �
=2; s ¼ d; g. We thus obtain
xnþ1
d ¼ xn

d þ vn
dDt þ 1� b �jdDtð Þ½ � vn

g � vn
d

� 	
Dt þr/n Dt2

2

þ Dvg e� �jgDt 1
2
� 1� b �jdDtð Þ

�jdDt


 �
þ 1�

�jdbð �jgDtÞ � �jgbð �jdDtÞ
�jd � �jg

� 
Dt; ð19Þ

vnþ1
d ¼ vn

d þ bð �jdDtÞ �jd vn
g � vn

d

� 	
Dt þ Dvg e� �jgDt½1� bð �jdÞ� þ

�jd �jg

�jd � �jg
½bð �jgDtÞ � bð �jdDtÞ�Dt

� 
: ð20Þ
Remarkably the above particle method contains no explicit term arising from the stiff coupling of the particle component. Of
course, the b terms take into account that the gas–dust coupling is fast compared to the time-step Dt. However, each particle
motion is integrated individually though it effectively depends on the other particles solutions, and the scheme is essentially
explicit in time, as it only involves the particle solution at time t ¼ nDt. Still the scheme is stable and convergent, and this is
due to the fact that the gas velocity solution at times t and t þ Dt, with which the particles interact, already contains the
effect of the dust component to second order accuracy, even in the stiff regime. The gas velocity solution is in fact the only
quantity entering Eqs. (19) and (20). We have actually tried to employ more sophisticated approaches than Eq. (18), which
would also involve the dust fluid velocity, but despite the higher degree of complexity and computational cost, they did not
improve on the algorithm accuracy.

3. Two-fluid semi-implicit predictor–corrector

3.1. Two-fluid description

In order to efficiently model the collective effect of the drag force exerted by the dust particles on the fluid we use a fluid
like description of the dust component. Thus, using a particle–mesh method we define the dust density and velocity field on
a Cartesian grid as
qdðiÞ ¼
1

Dx3

X
p

w½xp � xðiÞ�mp; ð21Þ

udðiÞ ¼
X

p

w½xp � xðiÞ�vp; ð22Þ
where as in the previous section wðsÞ is a weight function, xðiÞ, is the i-th cell’s center, but now the summation is carried out
over all the dust particles. Note that the position and velocity of the dust particles are updated independently at each time-
step using a particle method described in Section 2. The time evolution of qd and qdud is then obtained from the zero-th and
first velocity moments, respectively, of Boltzmann’s equation for the dust distribution function, gdðx;v ; tÞ. Using the particle
equation of motion (3) and (4), and the appropriate collision term we obtain
@qd

@t
þ @

@x
ðqdudÞ ¼ 0; ð23Þ

@

@t
ðqdudÞ þ

@

@x
ðqdududÞ ¼ �qdjdðud � ugÞ � qdr/; ð24Þ
where closure is granted by neglecting higher order velocity terms as suggested by [13]. However, different closures can in
principle be employed starting from the particle description as need be. Finally, by Newton’s third Law, Eq. (24) indicates
that the collective drag force exerted on the gas by the dust particles ought to be
fd ¼ �jgðug � udÞ;jg ¼ jd
qd

qg
; ð25Þ
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ensuring momentum conservation.
We can now extend the set of conservative variables, U, to include the density and momentum of the dust component,
1 In t
U ¼ ðq;qug ;qEÞT ! ðqg ;qgug ;qE;qd;qdudÞT : ð26Þ
The extended set of equations for U is obtained by combining (1), (2), (23) and (24). After rearranging the source terms, it
reads
@U
@t
þ @FðUÞ

@x
¼ KUU þ SðUÞ; ð27Þ
where
FðUÞ ¼

qug

qu2
g þ P

ug ½qEþ P�
qud

qu2
d

0BBBBBB@

1CCCCCCA; SðUÞ ¼

0
qgr/

ugqgr/

0
qdr/

0BBBBBB@

1CCCCCCA; KU ¼

0 0 0 0 0
0 �jg 0 0 jd

0 0 0 0 0
0 0 0 0 0
0 jg 0 0 �jd

0BBBBBB@

1CCCCCCA: ð28Þ
3.2. Semi-implicit method

Given our extended system of Eq. (27) we aim for a scheme in which an explicit approach is retained for the non-stiff
conservative hydrodynamic term, r � F, and a semi-implicit method is employed for the stiff part of the source terms.

As in Miniati and Colella [19], our time-discretization for the source terms is a single-step, second order accurate scheme.
However, instead of a method based on the deferred correction approach [9], here we derive our predictor corrector using
again the a-QSS [21]. The reason is that although stable and convergent, unlike the a-QSS method, the deferred correction
method is not L-stable (although a combination of two such methods can lead to L-stability). This can lead to large errors,
particularly with regard to momentum conservation, in a hybrid method in which fluid and particles are stiffly coupled.

Our semi-implicit method consists in solving the following collection of ODEs, one at each grid point,
dU
dt
¼ KUU þ SðUÞ � ðr �~FÞnþ1

2; ð29Þ
where we view the time-centered flux divergence as a constant source, whose computation using a modified Godunov meth-
od is described below. Our predictor–corrector step then reads:
eUðt0 þ DtÞ ¼ eK0DtU0 þ I0
K0
ðDtÞ SðU0Þ � ðr �~FÞnþ

1
2

h i
Dt; ð30Þ

Uðt0 þ DtÞ ¼ e
�KDtU0 þ I0

K
ðDtÞ SðU0Þ � ðr �~FÞnþ

1
2

h i
Dt þ I1

K
ðDtÞ Sð

eUÞ � SðU0Þ
Dt

Dt2

2
; ð31Þ
where, K � ½KðU0Þ þ KðeUÞ�=2, is used in Eq. (31), and we have defined the set of operators
In
OðtÞ �

n!

tn

Z t

0
eðt�sÞOsnds: ð32Þ
Note that gravity is actually unaffected by the operators In
OðtÞ; however the form of Eqs. (30) and (31) is suitable for a more

general form of SðUÞ, which may even include stiff terms associated, for example, with an endothermic source.1 Although the
form of predictor corrector in the above equations appears different from the original system (11) and (12), their equivalence
can be easily verified by replacing the operators K;Q with the coefficients p; q. It is also easy to see that in the non-stiff limit, the
above scheme reduces to the usual second order accurate explicit formulation
Uðt0 þ DtÞ ¼ ð1þ KDtÞU0 � Dt ðr � FÞnþ1
2 þ Dt

2
SðeUÞ þ SðU0Þ
h i

: ð35Þ
4. Two-fluid predictor step

In order to compute our predictor step, we cast the extended two-fluid gas–dust system in primitive form as follows:
@W
@t
þ AðWÞ @W

@x
¼ K W þ G; ð36Þ
his case, if R indicates the endothermic source, Eq. (29), as well as Eqs. (30) and (31), should be modified by replacing

SðUÞ  SðUÞ þ RðU0Þ; ð33Þ
KðUÞ  KðUÞ þ rURðUÞ: ð34Þ
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where the primitive variables are
W ¼ ðqg ; ug ; P;qd;udÞT ; ð37Þ
and the quasi-linear operator, AðWÞ � rUW � rUF � rW U, which includes an advection and a Lagrangian component, is
AðWÞ � ugIþ AL;AL ¼

0 qg 0 0 0

0 0 q�1
g 0 0

0 qgc2 0 0 0

0 0 0 ðud � ugÞ qd

0 0 0 0 ðud � ugÞ

0BBBBBBBB@

1CCCCCCCCA
: ð38Þ
Finally
K ¼

0 0 0 0 0

0 �jg 0 0 jg

0 0 0 0 0

0 0 0 0 0

0 jd 0 0 �jd

0BBBBBBB@

1CCCCCCCA; G ¼

0

�r/

0

0

�r/

0BBBBBBB@

1CCCCCCCA; ð39Þ
represent the drag operator and the residual source term, including gravity, in primitive form. Following the method in
Miniati and Colella [19] we can follow the dynamics of the system along Lagrangian trajectories
DW
Dt
¼ �ALðWÞ

@W
@x
þ K W þ G; ð40Þ
with solution given by Duhamel’s formula:
WðtÞ ¼ eKtWð0Þ �
Z t

0
eKðt�sÞ AL

@W
@x
� G


 �
ds: ð41Þ
This allows us to define a modified dynamics reading
DW
Dt
þ IKðtÞAL

@W
@x
¼ IKðtÞ½KWð0Þ þ G� þ OðtÞ: ð42Þ
4.1. Characteristic analysis

We use the quasi-linear system (42) with t ¼ Dt=2 to compute the Godunov predictor step. Thus we analyze the modified
hyperbolic structure of that system of equations.

With the choice of K in (39), from Eq. (32) we obtain
eKDt=2 ¼

1 0 0 0 0

0 jdþjg e�jDt=2

j 0 0 jg ð1�e�jDt=2Þ
j

0 0 1 0 0

0 0 0 1 0

0 jdð1�e�jDt=2Þ
j 0 0 jgþjde�jDt=2

j

0BBBBBBB@

1CCCCCCCA
; ð43Þ
where j ¼ jg þ jd is the total relaxation rate, and
IKðDt=2Þ ¼

1 0 0 0 0

0 jdþbjg

j 0 0 jg ð1�bÞ
j

0 0 1 0 0

0 0 0 1 0

0 jdð1�bÞ
j 0 0 jgþbjd

j

0BBBBBBB@

1CCCCCCCA
; ð44Þ
where
b ¼ b
jDt

2

� �
¼ 1� e�

1
2jDt

1
2 jDt

; 0 < b < 1: ð45Þ
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We can then define the modified linear operator
IKðDt=2ÞAL ¼ Aeff
L ¼

0 qg 0 0 0

0 0 jdþbjg

jqg
0 jg ð1�bÞ

j ðud � ugÞ

0 qgc2 0 0 0
0 0 0 ðud � ugÞ qd

0 0 jdð1�bÞ
jqg

0 jgþbjd
j ðud � ugÞ

0BBBBBBBB@

1CCCCCCCCA
; ð46Þ
with associated characteristic equation
k½k� ðud � ugÞ� k3 � k2 jg þ bjd

j
ðud � ugÞ � k

jd þ bjg

j
c2 þ bc2ðud � ugÞ


 �
¼ 0: ð47Þ
The system eigenvalues are given by the roots of the above equation. The first obvious solution, k0 ¼ 0, correspond to an en-
tropy wave for the gas component. Since an entropy wave does not involve velocity perturbations, we expect this type of
wave to be unaffected by the presence of a drag term. The other obvious eigenvalue, kd ¼ ðud � ugÞ, is the equivalent of
an entropy wave, but for the dust component. Perturbations in qd propagate only along the characteristic curve associated
to this eigenvalue and, therefore, do not affect other primitive variables. For this reason, in the following we simplify the
characteristic analysis by dropping out the qd components and assume that: qd is transported as a passive scalar with speed
kd and its intermediate state Riemann solution is simply given by the average of left and right state values.

The remaining eigenvalues of the system are given by the roots of the cubic polynomial appearing in Eq. (47), which can
be shown to be always distinct and real, with a few exceptions discussed below. The set of relevant eigenvalues is then
k0 ¼ 0; ð48Þ

kþ ¼ 1
3

d̂uþ 2ffiffiffi
3
p ĉ2 þ d̂u2

3

 !1=2

cos
u
3

� 	
; ð49Þ

k� ¼ 1
3

d̂uþ 2ffiffiffi
3
p ĉ2 þ d̂u2

3

 !1=2

cos
u
3
þ 2

3
p

� �
; ð50Þ

k� ¼ 1
3

d̂uþ 2ffiffiffi
3
p ĉ2 þ d̂u2

3

 !1=2

cos
u
3
þ 4

3
p

� �
; ð51Þ
where
ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd þ bjg

j

r
c; d̂u ¼ jg þ bjd

j
du; du ¼ ud � ug ; ð52Þ

u ¼ cos�1 d̂u
2d̂u2 þ 9ĉ2 1� 3bj2

ðjdþbjg ÞðjgþbjdÞ

� 	
2ð3ĉ2 þ d̂u2Þ

3
2

24 35; ð53Þ
and cos�1 conventionally indicates the principal value of the multivalued inverse cosine function. With this convention we
always have kþ > ðk�; k0Þ > k�, whereas all three cases k0

Rk� are admitted. An extra eigen-mode driven by the dust drift has
appeared. Under stiff dust–gas coupling conditions ðb < 1Þ, this mode mixes with the pressure driven modes thus acquiring
an acoustic-like character. Likewise, the properties of the original sound waves are contaminated by the dust component.
The degree of mutual contamination is regulated by the ‘mixing angle’ u. In general sound speed is affected by both the addi-
tional inertia and by the motion of the dust particles.

To see this in more details in the following we explore the asymptotic behavior of the waves in a few cases of interest. The
general results are summarized in Fig. 1. In the non-stiff limit, we have
lim
b!1

kþ ¼ c; lim
b!1

k� ¼ �c; lim
b!1

k� ¼ du; ð54Þ
thus recovering the expected values. However, as the dust particle drift vanishes we have
lim
du!0

kþ ¼ ĉ; lim
du!0

k� ¼ �ĉ; lim
du!0

k� ¼ bj
jd þ bjg

d̂u: ð55Þ
Here ĉ is given in Eq. (52) and correspond to a sound speed in which the gas density is replaced by an effective average be-
tween the dust and the gas densities. So, in the stiff limit ðb! 0Þ, it is the total density that enters the definition of the sound
speed (which can be dominated by the dust density). Similarly, in the limit of large values of d̂u we obtain (see dashed lines
in Fig. 1)
lim
d̂u!1

kþ ¼ d̂u; lim
d̂u!1

k� ¼ ��c; lim
d̂u!1

k� ¼ �c; ð56Þ

lim
d̂u!�1

kþ ¼ �c; lim
d̂u!�1

k� ¼ d̂u; lim
d̂u!�1

k� ¼ ��c; ð57Þ
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Fig. 1. Solid lines: eigenvalues versus ðug � udÞ, in sound speed units, for b ¼ 0:25 and jg=j ¼ 0:65. The dash lines indicate the various asymptotic branches
corresponding to k ¼ �c (high, horizontal) k ¼ ��c (low horizontal) and k ¼ d̂u (diagonal).
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where we have used
�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bj
jg þ bjd

s
c; ð58Þ
which represent an effective sound speed when the perturbation propagates opposite to the direction of the dust particles
velocity. The said propagation speed vanishes in the stiff limit, but it always coincide with the sound speed (c) in the limit of
negligible dust density (i.e. jg ! 0;jd ! j).

To conclude the analysis we introduce the array of right eigenvectors (by column)
R �

1 1 1 1
k�

qg
0 k�

qg

kþ

qg

c2 0 c2 c2

ðĉ�k�Þðĉþk�Þ
lduðb�1Þ 0 ðĉ�k�Þðĉþk�Þ

lduðb�1Þ
ðĉ�kþÞðĉþkþÞ

lduðb�1Þ

0BBBB@
1CCCCA; ð59Þ
where, to simplify the notation, we have introduced the reduced density, l � qgqd=ðqg þ qdÞ. Similarly, the array of left
eigenvectors (by row) is
L �

0 � ðkþþk�Þqg

ðkþ�k�Þðk��k�Þ
ĉ2þkþk�

c2ðkþ�k�Þðk��k�Þ � lduðb�1Þ
ðkþ�k�Þðk��k�Þ

1 0 � 1
c2 0

0 ðkþþk�Þqg

ðkþ�k�Þðk��k�Þ � ĉ2þkþk�

c2ðkþ�k�Þðk��k�Þ
lduðb�1Þ

ðkþ�k�Þðk��k�Þ

0 � ðk�þk�Þqg

ðkþ�k�Þðkþ�k�Þ
ĉ2þk�k�

c2ðkþ�k�Þðkþ�k�Þ � lðud�ug Þðb�1Þ
ðkþ�k�Þðkþ�k�Þ

0BBBBBB@

1CCCCCCA: ð60Þ
Just like for the eigenvalues, it can be easily verified that the definitions (59) and (60) tend to the usual expression for the left
and right eigenvectors in the non-stiff limit.

4.1.1. Loss of strict hyperbolicity
When either one of the following three cases occurs, b! 1; du! 0;l! 0, (implying either qg ¼ 0 or qd ¼ 0) the first,

third and fourth right eigenvectors, appear to become singular. However, the asymptotic analysis shows that in these limits
the expressions, k	 
 ĉ, approach zero quadratically in ðb� 1Þ and linearly in both qd and du, so that the first and fourth right
eigenvectors are always well defined.

While the third right eigenvector still diverges, the corresponding left eigenvector tends to zero at the same rate (because
kþ þ k� is quadratic in ðb� 1Þ and linear in both qd and du, whereas ĉ2 þ kþk�, is quadratic in both ðb� 1Þ and du, and linear
in qd), so that the characteristic decomposition is non-singular in the above limits. Note that this ‘‘illness” of the third right
eigenvector could be formally cured by renormalizing the third left and right eigenvectors by the factor f3 and f�1

3 , respec-
tively, where
f3 ¼
ðkþ � k�Þðk� � k�Þ

lduðb� 1Þ : ð61Þ
The eigensystem can still become singular when two eigenvalues become identical, i.e. strict hyperbolicity is lost. Inspection
of Eqs. (49)–(51) and (53) indicates that it is possible to have k� ¼ k� or kþ ¼ k� when / ¼ 0 or / ¼ p, respectively. These
relations are satisfied when dû ¼ 
ĉ, respectively, and simultaneously either b ¼ 1, or l ¼ 0 is verified. As it appears from



Fig. 2. Four-waves structure of the Riemann problem.
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(59) and (60), in this case the third (�) eigenvectors (left and right) become parallel to either the first (�) or fourth (+) eigen-
vectors, respectively.

When this is the case we modify our characteristic synthesis as suggested by Bell et al. [4]. For example, if ak ¼
P

klk � dW
are the coefficients of the characteristic decomposition of a perturbation dW with respect to the set of left eigenvalues lk,
when k� � k	 6 �, with typically, � ’ 10�2, the above perturbation would be reconstructed as
2 For
with th
dW ¼
X

k

akrk ! a�r	 þ
X
k–�

akrk; ð62Þ
where rk is the set of right eigenvectors.

4.1.2. Addition of endothermic processes
We can easily generalize the above results to include stiff endothermic processes. Suppose the rate of change of the gas

internal energy, e ¼ P=qgðc� 1Þ, is
de
dt
¼ Kðe;qgÞ: ð63Þ
In this case the modified linear operator defined in Eq. (46) becomes
Aeff
L ¼

0 qg 0 0 0

0 0 jdþbjg

jqg
0 jg ð1�bÞ

j ðud � ugÞ

0 aqgc2 � ð1�aÞKqqg

Ke
0 0 0

0 0 0 ðud � ugÞ qd

0 0 jdð1�bÞ
jqg

0 jgþbjd
j ðud � ugÞ

0BBBBBBBB@

1CCCCCCCCA
; ð64Þ
where
Ke �
@K
@e

; Kq �
@K
@qg

; aðDtÞ � eKeDt � 1
KeDt

; 0 < a < 1: ð65Þ
Then it can be shown that the above characteristic analysis remains valid provided the gas sound speed is replaced with the
following effective value [19]:
ceff ¼ 1þ aðc� 1Þ � ð1� aÞ
Kqqg

Kee


 �
P
qg

( )1
2

: ð66Þ
As discussed at length in [19] the above scheme is applicable as long as the fluid is thermally stable [10], namely:
Kee
Kqqg

>
1� a

aðc� 1Þ þ 1
: ð67Þ
4.2. Linearized riemann solver

The characteristic analysis derived in Section 4.1 defines the structure of the solution to the Riemann problem for the gas–
dust system. Unlike ordinary hydrodynamics, this is now characterized by three acoustic wave families and one entropy
wave propagating at the fluid velocity.2 The corresponding four characteristic curves determine in general five distinct
the sake of clarity, in the following we continue to ignore the contact discontinuity in the dust component, which travels at speed kd without interacting
e rest of the primitive variables.
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regions, corresponding to the initial left (L) and right (R) states and three intermediate states of the gas. Fig. 2 illustrates this,
for the case in which k� < k0. In the x� t plane, the solution cone is separated by the unperturbed R and L-states by the fast-
est and slowest eigenvalues, respectively. The R-state is connected to a *R-state by a rarefaction fan or a shock depending on
whether kþR is faster or slower than kþ�R. The same applies to the connection between the L-state and *L-state. Then if k� < k0

as assumed in Fig. 2, the *R-state is connected to a #-state by an ordinary contact discontinuity, where the density jumps but
pressure and velocity remain constant. Finally, another acoustic wave separates the #-state and *L-state, which again either
takes the form of a shock or a rarefaction wave depending on whether the characteristics with speed k��L and k�# converge or
diverge.

In order to calculate the intermediate states described above, we use a linearized Riemann solver [27], which is discussed
in detail below. Then, in general, given the input left and right states WL;WR, we can use the left and right eigenvectors,
flk; rkgk¼1;...;n and the corresponding eigenvalues kk, computed at some intermediate state, to decompose the perturbation
along the characteristics as follows:
ak ¼ lk � ðWR �WLÞ;

Wk
R ¼WL þ

Xk

k0¼1

ak0rk0 ;W
k
L ¼Wk

R � akrk; k
k
L;R ¼ kk Wk

L;R

� 	
:

Then the solution to the Riemann problem along the ray x=t ¼ 0;WRP , is given by
WRP ¼WL þ
X

max kk
L ;k

k
Rð Þ<0

akrk þ
X

kk
L>0>kk

R ;k
k
Lþkk

R<0

akrk þ
X

kk
L<0<kk

R

kk
L

kk
L � kk

R

akrk:
The first sum is the correction to the state for the waves that are unambiguously have a negative speed; the second is a cor-
rection to the state for transonic shocks; and the third a correction for transonic rarefactions, that prevents the formation of
entropy-violating shocks. In the following we use a slight variation of this approach that is better able to preserve reflection
symmetries.

Recall that we have three acoustic-like wave families k ¼ þ; �; � with speeds kk given in (49)–(51) and the remaining
wave propagates at the fluid speed, k0. Assume for the moment that we can compute the eigenvalues kk at the intermediate
states, *L,#, *R, following a procedure described in detail below. Then the approximate Riemann solver is given as follows.

If k0 > 0, then
if min k��L; k

�
#

� 	
> 0 or k��L > 0 > k�# and k��L þ k�# > 0 then
WRP ¼
W�L if max k�L ; k

�
�L

� �
< 0 or k�L > 0 > k��L; k

�
L þ k��L < 0

WL þ k�L
k�L �k��L

ðW�L �WLÞ if k�L < 0 < k��L

WL otherwise

8>><>>:
else if k��L < 0 < k�# then
WRP ¼W�L þ k��L

k��L�k�#
ðW# �W�LÞ

else
WRP ¼W#

endif
else if k0 < 0, then
if max k�#; k

�
�R

� 	
< 0 or k�# > 0 > k��R and k�# þ k��R < 0 then

WRP ¼

W�R if maxðkþ�R; k
þ
R Þ > 0 or kþR > 0 > kþR ; k

þ
�R þ kþR > 0

WR þ
kþR

kþR �kþ�R
ðW�R �WRÞ if kþ�R < 0 < kþR

WR otherwise

8>><>>:
else if k�# < 0 < k��R then
WRP ¼W�R þ

k��R
k��R�k�#

ðW# �W�RÞ
else
WRP ¼W#

endif
endif

In order to complete our description of the approximate Riemann solver, we now outline the method for computing the
intermediate states. Basically we integrate the characteristic equations along the characteristic directions to relate the jumps
experienced by the primitive variables across adjacent states [12]. The characteristic directions are assumed to be constant
and are computed at the foot of the characteristics. The characteristic equations are obtained by setting lk � dW ¼ 0 for each
eigenstate and they read
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dp� v�g ðk
�; kþÞdug � v�d ðk

�; kþÞdud ¼ 0; ð68Þ
dp� c2dqg ¼ 0; ð69Þ
dp� v�g ðk

�; kþÞdug � v�d ðk
�; kþÞdud ¼ 0; ð70Þ

dp� vþg ðk
�; k�Þdug � vþd ðk

�; k�Þdud ¼ 0; ð71Þ
where the characteristic slopes in phase–space are given by
vþg ðk
�; k�Þ ¼ k� þ k�

ĉ2 þ k�k�
qgc2; ð72Þ

vþd ðk
�; k�Þ ¼ lduð�1þ bÞ

ĉ2 þ k�k�
c2; ð73Þ
and the analogous expressions for v�g;d;v�g;d are obtained by permutation of the symbols þ; �; � in the above equations.
The above procedure of integrating the characteristic equations yields 12 equations in 12 variables. However, neither the

gas or dust fluid velocities nor the gas pressure change across the contact discontinuity, reducing the system to 9 equations
in the following 9 variables: qg;�L;ug;�L, Pg;�L; ud;�L;qg;�R;ug;�R, Pg;�R;ud;�R;qg;#, with ug;#; Pg;#;ud;# coinciding with the correspond-
ing variable of either the *L or *R-state. In order to keep the system linear we make two further approximations when com-
puting the characteristic directions (72) and (73) in the intermediate states: (1) we assume that the gas–dust velocity
difference, ug � ud, in the intermediate *L, *R-states, can be approximated with the values corresponding to the L,R-states,
respectively. And (2), that, when connecting the #-state with the *L-state (*R-state) via the -(+) characteristic, i.e. when
k� < k0 ( k� > k0), we can use the density of the *L-state (*R-state) instead of the value corresponding to the #-state. With
this latter approximation the relations between velocity jumps across the characteristic line �, remain unchanged whether
k� < k0 or k� > k0. The solution then reads
ug;�R ¼ ug;R þ
ðPL � PRÞ 1� gL

g�

� 	
þ ðug;L � ug;RÞ hL þ h�

g�
gL

� 	
þ ðud;L � ud;RÞ h�þhL

g�

ðhL � hRÞ � gR
hLþh�

g�
þ gL

hRþh�
g�

; ð74Þ

P�R ¼ PR þ hRðug;R � ug;�RÞ; ð75Þ

ud;�R ¼ ud;R þ gRðug;R � ug;�RÞ; ð76Þ

qg;�R ¼ qg;R þ
P�R � PR

c2
R

; ð77Þ

ug;�L ¼ ug;L þ
ðPL � PRÞ 1� gR

g�

� 	
þ ðug;L � ug;RÞ hR þ h�

g�
gR

� 	
þ ðud;L � ud;RÞ h�þhR

g�

ðhL � hRÞ � gR
hLþh�

g�
þ gL

hRþh�
g�

ð78Þ

P�L ¼ PL þ hLðug;L � ug;�LÞ; ð79Þ

ug;�L ¼ ug;L þ gLðug;L � ug;�LÞ; ð80Þ

qg;�L ¼ qg;L þ
P�L � PL

c2
L

; ð81Þ

qg;# ¼
qg;�R þ

P�L�P�R
c2
�R

if k��L > k0;

qg;�L þ P�R�P�L
c2
�L

if k��R < k0;

8><>: ð82Þ

qd;�L ¼ qd;�R ¼ qd;# ¼
qd;L þ qd;R

2
; ð83Þ
where we have defined the following coefficients,
hR ¼
v�g;Rv�d;R � v�g;Rv�d;R

v�d;R � v�d;R
¼ �

qgc2

kþ

 !
R

; hL ¼
vþg;Lv�d;L � v�g;Lvþd;L

vþd;L � v�d;L
¼ �

qgc2

k�

 !
L

; ð84Þ

gR ¼
v�g;R � v�g;R
v�d;R � v�d;R

¼
qg

kþ
ðkþÞ2 � ĉ2

lduðb� 1Þ

" #
R

; gL ¼
vþg;L � v�g;L
vþd;L � v�d;L

¼
qg

k�
ðk�Þ2 � ĉ2

lduðb� 1Þ

" #
L

; ð85Þ

h� ¼
v�g;�Rvþd;�L � vþg;�Lv�d;�R

vþd;�L � v�d;�R
; g� ¼

vþg;�L � v�g;�R
vþd;�L � v�d;�R

: ð86Þ
The extra symbols L, *L, *R, R in the subscript of the v functions defined in (72) and (73) indicate the state at which the char-
acteristic directions is defined. Note that while the definition of the coefficients hL; hR;gL;gR is based on the known L, R-states,
computing h� and g� involves knowledge of the intermediate states, *L or *R. It was in order to avoid the non-linearities aris-
ing from such dependencies that we have introduced the above approximations (1) and (2).
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As a sanity check we may note that the non-stiff limit for the characteristic slopes in phase–space read
3 Not
then co
lim
b!1

v	g ¼ 
qc; lim
b!1

v	d ;v
�
g ¼ 0; lim

b!1
v�d ¼ 1; ð87Þ
so that the coefficients in (84) and (86) tend to
lim
b!1

hL ¼ qLcL; lim
b!1

hR ¼ �qRcR; lim
b!1

h� ¼ const:; lim
b!1

gL;R ¼ 0; lim
b!1

g� ¼ 1; ð88Þ
and the Riemann solver solutions (74) and (83) reduce to the usual expressions [12].

4.3. Godunov predictor in one dimension

With the operator Aeff and the sets of left and right eigenvectors that we have worked out in Section 4.1, the Godunov
predictor step is carried out as usual as follows. First the local slopes are defined. In particular at each point left and right
one-sided slopes as well as cell centered slopes are evaluated and then a final choice on the local slope DWi is defined by
using van Leer limiter. The upwind, time-averaged left (�) and right (+) states at cell interfaces due to fluxes in the normal
direction, q, are then reconstructed as:
Wi;	;q ¼Wn
i þ

1
2

I � Dt
Dx

Aeff
i

� �
P	ðDWiÞ; ð89Þ
where
P	ðWÞ ¼
X
	kk>0

ðlk �WÞ � rk: ð90Þ
The source term component is likewise accounted for as
Wi;	;q ¼Wi;	;q þ
Dt
2
I0

KðDt=2ÞS: ð91Þ
The fluxes at the cell faces Fiþ1
2

are computed by solving the Riemann problem with left and right states given by

ðWi;þ;Wiþ1;�Þ to obtain W
nþ1

2
iþ1

2
and computing Fiþ1

2
¼ F W

nþ1
2

iþ1
2

� 	
.

To modify this procedure to account for the effective dynamics, we use the characteristic analysis of the effective dynam-
ics to perform each of the three steps. The projection operator and any limiting in characteristic variables is done using the
eigenvectors and eigenvalues for the effective dynamics derived in Section 4.1. Finally, the approximate Riemann solvers we
use was defined in Section 4.2.

4.4. Extension to more than one dimension

For directionally unsplit schemes in D dimensions an additional step is required in order to correct the time-averaged left/
right states at cell interfaces, Wi;	;d in Eq. (91), for the effects of D� 1 fluxes perpendicular to the cell interface normal direc-
tion. Based on Eq. (42) the effect of the stiff source term would be accounted for by carrying out for each additional direction,
q, a transformation
Aq ! I0
KðDt=2ÞAL;q þ uqI � Aeff

q ; ð92Þ
analogous to that described in Eq. (46). In the method proposed by [7,25] the corrections due to transverse fluxes are com-
puted according to a conservative scheme. For example in two dimensions,3 with q ¼ x
Wi;j;	;x ¼Wi;j;	;x �
Dt

2Dy
rUW Fy

i;jþ1
2
� Fy

i;j�1
2

� 	
; ð93Þ
where the input Wi;j;	;x is computed using a one-dimensional Godunov calculation as in the previous section, as are the fluxes
Fy

i;jþ1
2
. The above transformations imply the following transverse flux corrections for the gas and dust velocity, dug ; duv ,

respectively:
dug;x ! dug;x þ
Dt

2Dy
jg

j
ð1� bÞ

pi;jþ1
2
� pi;j�1

2

qg
� ðud � ugÞ uy;i;jþ1

2
� uy;i;j�1

2

� 	" #
; ð94Þ

dud;x ! dud;x �
Dt

2Dy
jd

j
ð1� bÞ

pi;jþ1
2
� pi;j�1

2

qg
� ðud � ugÞ uy;i;jþ1

2
� uy;i;j�1

2

� 	" #
; ð95Þ
where, unless explicitly indicated, all quantities are evaluated at cell center, i; j.
ation in Eq. (93) indicates that primitive variables are converted into conservative variables which are then updated through conservative fluxes and
nverted back into primitive form.
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5. Stability considerations

The stability properties of the above modified Godunov’s method are analogous to those discussed in [19] when consid-
ering endothermic source terms. In particular we note that the inspection of the characteristic analysis shows that the sub-
characteristic condition for the characteristic speeds at equilibrium is always satisfied. This condition, while being necessary
for the stability of our linearized system [27], also guarantees that the numerical solution tends to the solution of the equi-
librium equation as the relaxation time tends to zero [6].

In addition, since the structure of the equations and the numerical framework, including the Riemann solver, remain fun-
damentally unaltered with respect to classic Godunov’s schemes, we expect the usual stability conditions to apply, namely
the familiar CFL condition on the time-step
maxðjk�jÞ
Dt
Dx
6 1; � ¼ �; 0;�;d;þ: ð96Þ
As for the predictor corrector method described in Section 3.2, A-stability properties the a-QSS method have been discussed
in detail by Mott et al. [21]. Although not specifically mentioned by the authors, the same stability analysis they present
shows immediately that the a-QSS method is also L-stable.

6. Tests

6.1. Particle scheme

Before testing the convergence of the gas–dust scheme, we investigate the performance of the particle scheme presented
in Section 2. For the purpose we consider an individual particle propagating through a medium with specified density, veloc-
ity and pressure distributions. As expected [21], our scheme reproduces the exact solution when the particle moves through
a uniform medium, and when either the coupling constant or the background fluid has linear time dependence. Thus in the
following for our testing purposes we use a non-linear time dependent density, velocity and pressure field corresponding to a
one-dimensional, right propagating sound wave solution. Note that, although not presented here, we obtain equivalent con-
vergence rates as shown below when an external force acting on the particle is included. The wave quantities denoted with a
‘w’ subscript are given by Landau and Lifshitz [17]
uwðx; tÞ ¼ uw;0 þ B sin x� uw;0t � c0 þ
cþ 1

2
ðuw � uw;0Þ


 �
t

� 
; ð97Þ

qwðx; tÞ ¼ qw;0 1þ c� 1
2

uw

c0


 � 2
c�1

; Pwðx; tÞ ¼ Pw;0 1þ c� 1
2

uw

c0


 � 2c
c�1

; ð98Þ
where, c0 ¼
ffiffiffiffiffiffiffiffi
cPw;0
qw;0

q
, and we use
B ¼ 10�2; uw;0 ¼ 2; qw;0 ¼ 1; Pw;0 ¼ 1; c ¼ 5
3
: ð99Þ
Using the scheme described in Section 2 we advance the particle position and velocity to a solution time tend using a progres-
sively larger number of steps, Nsteps, and a correspondingly smaller time-step, DtN ¼ tend=Nsteps. We then estimate the error by
comparing solutions with resolution different by a factor 2 and use Richardson extrapolation to measure the convergence
rates. So, if sðmÞ is the solution obtained using m time-steps, the convergence rate is given by
RðmÞ ¼
ln sðmÞ�sð2mÞ

sð2mÞ�sð4mÞ

��� ���
lnð2Þ : ð100Þ
In Table 1 we report results for a choice of the coupling constant j0 such that the propagation regime goes from mildly stiff
to non-stiff. From left to right the table columns report the number of steps, the error and convergence rate of the particle
position and velocity and, in the last column, the stiffness parameter, j0Dt. The scheme is clearly second order accurate over
the stiffness range reported in the Table, even though the convergence rate of the velocity appears to be slower for small
Nsteps. However, this is not due to a decrease in convergence rate in the stiff regime. As illustrated in Table 2, the particle
scheme is still second order accurate even for much larger values of the stiffness parameter.

6.2. Convergence rates in smooth flows

In this section we test the convergence of the method presented in this paper, by studying the propagation of small per-
turbations in a gas–dust system with a long and short drag relaxation timescale. We consider both a two-fluid method in
which the dust is modeled as a fluid (and dust particles are not used), as well as the full fluid + particle method. In our test,
the fluid component is initialized with uniform density, pressure and velocity values, except for a sinusoidal perturbation
with small amplitude superposed to the x-velocity component. In formulae



Table 1
Particle scheme convergence rates.

Nsteps Ex Rx Ev Rv j0Dt

2 4.6E�3 1.4 8.1E�4 0.1 5.0E1
4 1.7E�3 2.2 7.8E�4 0.3 2.5E1
8 3.8E�4 2.2 6.5E�4 2.7 1.2E1
16 8.4E�5 2.0 1.0E�4 2.0 6.2E0
32 2.1E�5 2.0 2.5E�5 0.9 3.1E0
64 5.2E�6 2.0 1.4E�5 1.8 1.6E0
128 1.3E�6 2.0 4.0E�6 1.9 7.8E�1
256 3.2E�7 2.0 1.0E�6 2.0 3.9E�1
512 8.1E�8 2.0 2.6E�7 2.0 2.0E�1
1024 2.0E�8 2.0 6.6E�8 2.0 9.8E�2
2048 5.0E�9 2.0 1.7E�8 2.0 4.9E�2

Table 2
Particle scheme convergence rates.

Nsteps Ex Rx Ev Rv j0Dt

2 4.4E�3 1.3 9.4E�4 1.7 5.0E5
4 1.7E�3 2.2 2.9E�4 3.2 2.5E5
8 3.8E�4 2.2 3.1E�5 0.5 1.2E5
16 8.2E�5 2.0 2.2E�5 2.0 6.2E4
32 2.0E�5 2.0 5.5E�6 2.1 3.1E4
64 5.1E�6 2.0 1.2E�6 2.1 1.6E4
128 1.3E�6 2.0 2.8E�7 2.1 7.8E3
256 3.2E�7 2.0 6.6E�8 2.1 3.9E3
512 8.0E�8 2.0 1.6E�8 2.1 2.0E3
1024 2.0E�8 2.0 3.6E�9 2.3 9.8E2
2048 5.0E�9 2.0 7.4E�10 2.7 4.9E2
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ug;x ¼ u0 ½1þ A cosð2pk � rþ pÞ�; ð101Þ
q ¼ q0 ¼ c ¼ 1:4; p ¼ p0 ¼ 0:5; uy ¼ uy0 ¼ 0:7; u0 ¼ 0:5; ð102Þ
where r is the position vector. Similarly the dust particles are uniformly distributed on the grid in order to produce a uniform
density, and their velocity is initialized as
ud;x ¼ u0 ½1þ A cosð2pk � rÞ�; ð103Þ
that is half a period out of phase with respect to ug;x. When testing the hybrid method in two dimensions we use 4 particles
per cell and a we interpolate the particle quantities to the grid using a triangular-shape-cloud interpolation scheme [18].

The above initial conditions produce a sinusoidal wave with amplitude A propagating in the domain along the direction
defined by the vector k. While we have experimented with various values for the parameters A;k and j0, below we present
results for a few cases only, summarized in Table 3. In particular we consider a perturbation amplitude A ¼ 1:4� 10�2 and
adopt coupling coefficients j0 ¼ 1;102;106 to explore the non-stiff and stiff regimes respectively and, for simplicity, we re-
port only results from one-dimensional tests for the two-fluid model and from two-dimensional tests for the hybrid model.

In order to measure the rate at which the numerical solution converges, for each problem we carry out a set of 5 simu-
lation runs employing Ncell ¼ 16;32;64;128;256 for a total range of 32. Note that the stiffness conditions do not change sig-
nificantly as the grid is refined within the range of resolutions considered here. The convergence rate is measured using
Richardson extrapolation. Given the numerical solution qr at a given resolution r we first estimate the error at a given point
ði; jÞ, as
er;i;j ¼ qrði; jÞ � �qrþ1ði; jÞ; ð104Þ
where �qrþ1 is the solution at the next finer resolution, properly spatially averaged onto the coarser grid. We then take the n-
norm of the error
Ln ¼ kerkn ¼
X
jer;i;jjnv i;j

� 	1=n
; ð105Þ
where, v i;j ¼ Dx2 is the cell volume, and estimate the convergence rate as
Rn ¼
ln½LnðerÞ=LnðesÞ�

lnðDxr=DxsÞ
: ð106Þ
For each studied case listed in Table 3, we produce a corresponding Tables 4–7 reporting the L1; L2 and L1 norms of the error
and the corresponding convergence rates, R1;R2 and R1, as defined above. Note that the convergence rate of the dust



Table 3
Run set.

Run D A k j0 qd=qg Notea

A 1 1:4� 10�2 (1,0) 1 1 two-fluid

B 1 1:4� 10�2 (1,0) 106 1 two-fluid

C 1 1:4� 10�2 (1,0) 106 10�3 two-fluid

D 1 1:4� 10�2 (1,0) 106 103 two-fluid

E 1 1:4� 10�2 (1,0) 2� 102 1 two-fluid

F 2 1:4� 10�2 ð2=
ffiffiffi
5
p

;1=
ffiffiffi
5
p
Þ 1 1 hybrid

G 2 1:4� 10�2 ð2=
ffiffiffi
5
p

;1=
ffiffiffi
5
p
Þ 106 1 hybrid

H 2 1:4� 10�2 ð2=
ffiffiffi
5
p

;1=
ffiffiffi
5
p
Þ 106 10�3 hybrid

I 2 1:4� 10�2 ð2=
ffiffiffi
5
p

;1=
ffiffiffi
5
p
Þ 106 103 hybrid

L 2 1:4� 10�2 ð2=
ffiffiffi
5
p

;1=
ffiffiffi
5
p
Þ 102 1 hybrid

a Hybrid = hydro + dust particles.

Table 4
Convergence rates: case: A ¼ 1:4� 10�2;k ¼ ð1;0Þ;qd=qg ¼ 1.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 6.4E�07 – 1.4E�06 – 4.1E�06 – 3.2E�06 – 7.1E�06 – 2.0E�05 –
32 1.6E�07 2.0 3.6E�07 2.0 1.0E�06 2.0 8.1E�07 2.0 1.8E�06 2.0 5.1E�06 2.0
64 4.0E�08 2.0 8.8E�08 2.0 2.5E�07 2.0 2.0E�07 2.0 4.5E�07 2.0 1.3E�06 2.0
128 9.9E�09 2.0 2.2E�08 2.0 6.3E�08 2.0 5.1E�08 2.0 1.1E�07 2.0 3.2E�07 2.0

density-dust x-vel-dust
16 1.3E�05 – 2.9E�05 – 8.2E�05 – 4.6E�06 – 1.0E�05 – 2.9E�05 –
32 6.1E�06 1.1 1.4E�05 1.1 3.8E�05 1.1 1.2E�06 2.0 2.6E�06 2.0 7.2E�06 2.0
64 2.9E�06 1.0 6.5E�06 1.0 1.9E�05 1.0 2.9E�07 2.0 6.4E�07 2.0 1.8E�06 2.0
128 1.5E�06 1.0 3.2E�06 1.0 9.2E�06 1.0 7.2E�08 2.0 1.6E�07 2.0 4.5E�07 2.0
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component is evaluated in a way analogous to the fluid components, i.e. by considering the convergence of the error of the
fluid representation of the particles.

6.2.1. Two-fluid
Cases A–E test the performance of the two-fluid scheme in which the dust is fully treated as a fluid using the scheme de-

scribed in Sections 3 and 4 and the particle scheme is not used. The five tests correspond to the following cases: (A) non-stiff,
(B–D) stiff but with a range of dust-to-gas ratios and (E) mildly stiff case. In all tests the perturbation is along the x-axis,
k ¼ ð1;0Þ, although we have tested that the performance is the same in more than one dimension. The convergence rates
for each case are reported in Tables 4 and 8, respectively, for the density and velocity of the gas and dust. Errors in the
gas pressure are not reported but exhibit the same behavior. In the non-stiff case (A) all quantities converge with second
order accuracy, except the dust density, which is somewhat expected since in the absence of drag a pressure-less fluid be-
comes singular. In the stiff cases (B–D), the scheme produces second order accurate results independent of the dust-to-gas
ratio. In the intermediate regime, j0Dt � 1, the convergence rate is between first and second order accurate as expected the-
oretically [19]. Thus, the two-fluid algorithm for the dust–fluid system is second order accurate in both the stiff and non-stiff
regimes, and somewhat less accurate in between.

6.2.2. Full scheme
Cases F–L test the performance of the full fluid + particle in which the dust is represented by a set of particles whose

velocity and position are updated with the scheme described in Section 2. As in the previous section, the five tests corre-
spond to the following cases: (F) non-stiff, (G–I) stiff but with a range of dust-to-gas ratios and (L) mildly stiff case. In all
tests the perturbation is skewed with respect to the x-axis, k ¼ ð2;1Þ=

ffiffiffi
5
p

. The convergence rates for each case are reported
in Tables 9–13, respectively, for all of the gas and dust variables.

Inspection of the reported tables shows that, as expected, in the non-stiff regime (Table 9) the error drops with second
order accuracy, this time even for the dust density. In the stiff regime and, unless the fluid mass dominates over the dust
mass, the error on the fluid quantities drops approximately with first order accuracy, see Table 10–12. Since, as illustrated
in the Sections 6.1 and 6.2.1, both the particle scheme and the two-fluid scheme retain their second order accuracy irrespec-
tive of the stiffness conditions, the worsening in accuracy is most likely due to the difficulty of coupling the gas and the dust
fully self-consistently in the stiff regimes. However, the scheme is stable and convergent, though only first order, which



Table 5
Convergence rates: case: B ¼ 1:4� 10�2;k ¼ ð1;0Þ;qd=qg ¼ 1.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 3.2E�06 – 7.1E�06 – 2.1E�05 – 9.3E�07 – 2.3E�06 – 9.6E�06 –
32 8.0E�07 2.0 1.8E�06 2.0 5.2E�06 2.0 2.1E�07 2.1 4.9E�07 2.2 2.3E�06 2.1
64 2.0E�07 2.0 4.4E�07 2.0 1.3E�06 2.1 5.7E�08 1.9 1.3E�07 1.9 4.5E�07 2.3
128 4.9E�08 2.0 1.1E�07 2.0 3.1E�07 2.0 1.6E�08 1.8 3.6E�08 1.8 1.2E�07 1.9

density-dust x-vel-dust
16 3.7E�05 – 8.9E�05 – 4.0E�04 – 1.3E�06 – 2.9E�06 – 9.1E�06 –
32 1.0E�05 1.9 2.5E�05 1.8 1.3E�04 1.6 3.4E�07 1.9 7.6E�07 1.9 3.4E�06 1.4
64 2.6E�06 2.0 6.0E�06 2.1 2.0E�05 2.7 7.3E�08 2.2 1.7E�07 2.2 7.3E�07 2.2
128 7.7E�07 1.8 1.7E�06 1.8 4.8E�06 2.1 1.8E�08 2.0 4.1E�08 2.0 1.9E�07 1.9

Table 6
Convergence rates: case: C ¼ 1:4� 10�2 ;k ¼ ð1; 0Þ;qd=qg ¼ 10�3.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 4.2E�07 – 9.5E�07 – 2.7E�06 – 2.5E�06 – 5.7E�06 – 1.6E�05 –
32 1.1E�07 2.0 2.4E�07 2.0 6.8E�07 2.0 6.4E�07 2.0 1.4E�06 2.0 4.0E�06 2.0
64 2.7E�08 2.0 6.0E�08 2.0 1.7E�07 2.0 1.6E�07 2.0 3.6E�07 2.0 1.0E�06 2.0
128 6.8E�09 2.0 1.5E�08 2.0 4.3E�08 2.0 4.0E�08 2.0 9.0E�08 2.0 2.5E�07 2.0

density-dust x-vel-dust
16 2.5E�08 – 5.6E�08 – 1.6E�07 – 1.7E�06 – 3.7E�06 – 1.1E�05 –
32 4.8E�09 2.4 1.1E�08 2.4 3.0E�08 2.4 4.2E�07 2.0 9.3E�07 2.0 2.6E�06 2.0
64 3.6E�10 3.7 8.0E�10 3.7 2.4E�09 3.7 1.1E�07 2.0 2.3E�07 2.0 6.7E�07 2.0
128 3.5E�10 0.1 7.7E�10 0.1 2.2E�09 0.1 2.7E�08 2.0 5.9E�08 2.0 1.7E�07 2.0

Table 7
Convergence rates: case: D ¼ 1:4� 10�2;k ¼ ð1;0Þ;qd=qg ¼ 103.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 3.1E�07 – 6.9E�07 – 1.9E�06 – 5.5E�06 – 1.2E�05 – 3.4E�05 –
32 7.5E�08 2.0 1.7E�07 2.0 4.7E�07 2.0 1.4E�06 2.0 3.1E�06 2.0 8.7E�06 2.0
64 1.8E�08 2.1 4.0E�08 2.1 1.1E�07 2.1 3.5E�07 2.0 7.8E�07 2.0 2.2E�06 2.0
128 4.1E�09 2.1 9.2E�09 2.1 2.6E�08 2.1 8.8E�08 2.0 1.9E�07 2.0 5.5E�07 2.0

density-dust x-vel-dust
16 1.4E�06 – 3.0E�06 – 8.5E�06 – 5.5E�06 – 1.2E�05 – 3.4E�05 –
32 3.3E�07 2.0 7.4E�07 2.0 2.1E�06 2.0 1.4E�06 2.0 3.1E�06 2.0 8.7E�06 2.0
64 7.8E�08 2.1 1.7E�07 2.1 4.9E�07 2.1 3.5E�07 2.0 7.8E�07 2.0 2.2E�06 2.0
128 1.7E�08 2.2 3.8E�08 2.2 1.1E�07 2.2 8.8E�08 2.0 1.9E�07 2.0 5.5E�07 2.0

Table 8
Convergence rates: case: E ¼ 1:4� 10�2;k ¼ ð1;0Þ;qd=qg ¼ 1.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 3.0E�06 – 6.8E�06 – 1.9E�05 – 2.6E�06 – 5.9E�06 – 1.7E�05 –
32 1.5E�06 1.0 3.3E�06 1.0 9.4E�06 1.0 1.1E�06 1.3 2.4E�06 1.3 6.7E�06 1.3
64 7.4E�07 1.0 1.6E�06 1.0 4.6E�06 1.0 4.0E�07 1.4 8.8E�07 1.4 2.5E�06 1.4
128 2.3E�07 1.7 5.1E�07 1.7 1.5E�06 1.7 1.2E�07 1.8 2.6E�07 1.8 7.4E�07 1.8

density-dust x-vel-dust
16 3.3E�05 – 7.3E�05 – 2.0E�04 – 2.7E�06 – 6.0E�06 – 1.7E�05 –
32 9.0E�06 1.9 2.0E�05 1.9 5.6E�05 1.9 1.0E�06 1.4 2.3E�06 1.4 6.5E�06 1.4
64 3.0E�06 1.6 6.7E�06 1.6 1.9E�05 1.6 3.6E�07 1.5 8.1E�07 1.5 2.3E�06 1.5
128 8.7E�07 1.8 1.9E�06 1.8 5.5E�06 1.8 1.0E�07 1.8 2.3E�07 1.8 6.6E�07 1.8
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would not have been trivially expected. Finally, in the mildly stiff regime, the convergence rate reduces to approximately
first order, as shown in Tables 13 dust-to-gas ratio of 1. This is however, not unexpected because in this case accuracy of
the two-fluid algorithm also drops.



Table 9
Convergence rates: case: F ¼ 1:4� 10�2;k ¼ ð2;1Þ=

ffiffiffi
5
p

;qd=qg ¼ 1.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 2.1E�05 – 2.4E�05 – 3.3E�05 – 5.4E�05 – 6.0E�05 – 8.5E�05 –
32 6.0E�06 1.8 6.6E�06 1.8 9.4E�06 1.8 1.5E�05 1.9 1.6E�05 1.9 2.3E�05 1.9
64 1.6E�06 1.9 1.7E�06 1.9 2.5E�06 1.9 3.8E�06 2.0 4.2E�06 2.0 6.0E�06 2.0
128 4.0E�07 2.0 4.4E�07 2.0 6.3E�07 2.0 9.6E�07 2.0 1.1E�06 2.0 1.5E�06 2.0

y-vel-gas pressure
16 1.7E�05 – 1.8E�05 – 2.6E�05 – 3.0E�05 – 3.3E�05 – 4.7E�05 –
32 4.8E�06 1.8 5.4E�06 1.8 7.6E�06 1.8 8.4E�06 1.8 9.3E�06 1.8 1.3E�05 1.8
64 1.3E�06 1.9 1.4E�06 1.9 2.0E�06 1.9 2.2E�06 1.9 2.4E�06 1.9 3.4E�06 1.9
128 3.3E�07 2.0 3.6E�07 2.0 5.1E�07 2.0 5.6E�07 2.0 6.2E�07 2.0 8.8E�07 2.0

density-dust x-vel-dust
16 2.3E�04 – 2.5E�04 – 3.6E�04 – 7.8E�05 – 8.6E�05 – 1.2E�04 –
32 4.9E�05 2.2 5.5E�05 2.2 8.0E�05 2.2 2.0E�05 1.9 2.2E�05 1.9 3.2E�05 1.9
64 1.6E�05 1.7 1.7E�05 1.7 2.5E�05 1.7 5.1E�06 2.0 5.7E�06 2.0 8.0E�06 2.0
128 3.8E�06 2.1 4.3E�06 2.0 9.4E�06 1.4 1.3E�06 2.0 1.4E�06 2.0 2.0E�06 2.0

y-vel-dust
16 1.3E�04 – 1.5E�04 – 2.1E�04 –
32 3.5E�05 1.9 3.9E�05 1.9 5.5E�05 1.9
64 8.8E�06 2.0 9.8E�06 2.0 1.4E�05 2.0
128 2.2E�06 2.0 2.5E�06 2.0 3.5E�06 2.0

Table 10
Convergence rates: case: G ¼ 1:4� 10�2;k ¼ ð2;1Þ=

ffiffiffi
5
p

;qd=qg ¼ 1.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 5.8E�05 – 6.4E�05 – 9.7E�05 – 5.0E�05 – 5.6E�05 – 8.7E�05 –
32 1.3E�05 2.2 1.5E�05 2.1 2.4E�05 2.0 1.6E�05 1.6 1.8E�05 1.6 2.8E�05 1.6
64 3.7E�06 1.8 4.1E�06 1.9 6.3E�06 1.9 5.3E�06 1.6 6.0E�06 1.6 8.7E�06 1.7
128 1.5E�06 1.3 1.6E�06 1.3 2.6E�06 1.3 2.0E�06 1.4 2.3E�06 1.4 3.5E�06 1.3

y-vel-gas pressure
16 2.5E�05 – 3.0E�05 – 7.0E�05 – 8.2E�05 – 9.0E�05 – 1.4E�04 –
32 3.2E�05 �0.4 3.6E�05 �0.2 5.6E�05 0.3 1.8E�05 2.2 2.1E�05 2.1 3.3E�05 2.0
64 2.5E�05 0.4 2.8E�05 0.4 3.9E�05 0.5 5.2E�06 1.8 5.8E�06 1.9 8.8E�06 1.9
128 1.5E�05 0.7 1.6E�05 0.7 2.3E�05 0.8 2.1E�06 1.3 2.3E�06 1.3 3.7E�06 1.3

density-dust x-vel-dust
16 9.6E�05 – 1.1E�04 – 2.0E�04 – 4.9E�05 – 5.4E�05 – 8.1E�05 –
32 3.8E�05 1.3 4.4E�05 1.3 7.8E�05 1.3 1.8E�05 1.4 2.0E�05 1.4 2.9E�05 1.5
64 1.7E�05 1.1 1.9E�05 1.2 3.1E�05 1.3 6.1E�06 1.6 6.8E�06 1.6 9.8E�06 1.6
128 8.0E�06 1.1 9.1E�06 1.1 1.5E�05 1.1 2.2E�06 1.4 2.5E�06 1.4 3.8E�06 1.4

y-vel-dust
16 1.8E�04 – 2.0E�04 – 2.9E�04 –
32 8.1E�05 1.2 9.0E�05 1.2 1.3E�04 1.2
64 3.8E�05 1.1 4.2E�05 1.1 5.9E�05 1.1
128 1.8E�05 1.1 2.0E�05 1.1 2.8E�05 1.1
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6.3. Streaming instability

In this last section we carry out the test proposed in [28] (hereafter, YJ07), which consists of following the growth of an
initial perturbation unstable to the streaming instability [29]. The test setup, while considerably simplified with respect to a
Keplerian disk, preserves the key dynamical features leading to the streaming instability in a protoplanetary disk [14,15] and,
with the available analytic solution (for the linear regime), provides a clean test for a simulation code. The test consists of
simulating an axisymmetric shearing sheet in which dust particles drift with respect to the gas due to the radial pressure
gradient affecting the gas but not the dust. Both vertical structure (along the y-direction) and self-gravity are ignored. After
neglecting the vertical derivatives (along the y-axis), the governing equations for the gas component in a shearing sheet can
be written as in Eq. (1) provided that we replace fd in the source term in (2) with
f X
d ¼ fd þX

2ðug;y þ gvkÞ
� 1

2 ug;x

0

0B@
1CA; ð107Þ



Table 11
Convergence rates: case: H ¼ 1:4� 10�2 ;k ¼ ð2; 1Þ=

ffiffiffi
5
p

;qd=qg ¼ 10�3.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 1.5E�05 – 1.7E�05 – 2.4E�05 – 4.3E�05 – 4.8E�05 – 6.7E�05 –
32 4.5E�06 1.8 5.0E�06 1.8 7.1E�06 1.8 1.2E�05 1.9 1.3E�05 1.9 1.9E�05 1.8
64 1.2E�06 1.9 1.3E�06 1.9 1.9E�06 1.9 3.0E�06 2.0 3.4E�06 2.0 4.8E�06 2.0
128 3.0E�07 2.0 3.3E�07 2.0 4.8E�07 2.0 7.5E�07 2.0 8.4E�07 2.0 1.2E�06 2.0

y-vel-gas pressure
16 1.1E�06 – 1.2E�06 – 1.8E�06 – 2.1E�05 – 2.4E�05 – 3.4E�05 –
32 5.4E�07 1.0 6.0E�07 1.1 8.6E�07 1.1 6.3E�06 1.8 7.0E�06 1.8 9.9E�06 1.8
64 2.0E�07 1.4 2.3E�07 1.4 3.3E�07 1.4 1.7E�06 1.9 1.8E�06 1.9 2.6E�06 1.9
128 6.4E�08 1.7 7.1E�08 1.7 1.0E�07 1.7 4.2E�07 2.0 4.7E�07 2.0 6.7E�07 2.0

density-dust x-vel-dust
16 4.1E�07 – 4.6E�07 – 6.5E�07 – 1.8E�04 – 2.0E�04 – 2.8E�04 –
32 1.4E�07 1.6 1.5E�07 1.6 2.1E�07 1.6 4.9E�05 1.9 5.4E�05 1.9 7.6E�05 1.9
64 5.2E�08 1.4 5.8E�08 1.4 8.2E�08 1.4 1.2E�05 2.0 1.4E�05 2.0 1.9E�05 2.0
128 2.0E�08 1.4 2.2E�08 1.4 3.4E�08 1.3 3.1E�06 2.0 3.5E�06 2.0 4.9E�06 2.0

y-vel-dust
16 3.4E�05 – 3.7E�05 – 5.2E�05 –
32 9.9E�06 1.8 1.1E�05 1.8 1.6E�05 1.8
64 2.6E�06 1.9 2.9E�06 1.9 4.1E�06 1.9
128 6.7E�07 2.0 7.4E�07 2.0 1.0E�06 2.0

Table 12
Convergence rates: case: I ¼ 1:4� 10�2 ;k ¼ ð2;1Þ=

ffiffiffi
5
p

;qd=qg ¼ 103.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 6.5E�06 – 7.2E�06 – 1.0E�05 – 1.7E�04 – 1.9E�04 – 2.6E�04 –
32 2.3E�06 1.5 2.5E�06 1.5 3.5E�06 1.5 1.4E�04 0.3 1.6E�04 0.3 2.2E�04 0.2
64 1.0E�06 1.2 1.1E�06 1.2 1.6E�06 1.2 8.9E�05 0.7 9.9E�05 0.7 1.4E�04 0.7
128 5.3E�07 0.9 5.9E�07 0.9 8.3E�07 0.9 5.4E�05 0.7 6.0E�05 0.7 8.4E�05 0.7

y-vel-gas pressure
16 2.3E�04 – 2.6E�04 – 3.6E�04 – 9.1E�06 – 1.0E�05 – 1.4E�05 –
32 2.0E�04 0.2 2.2E�04 0.2 3.1E�04 0.2 3.2E�06 1.5 3.5E�06 1.5 5.0E�06 1.5
64 1.2E�04 0.7 1.4E�04 0.7 2.0E�04 0.6 1.4E�06 1.2 1.5E�06 1.2 2.2E�06 1.2
128 7.5E�05 0.7 8.3E�05 0.7 1.2E�04 0.7 7.4E�07 0.9 8.2E�07 0.9 1.2E�06 0.9

density-dust x-vel-dust
16 2.2E�05 – 2.4E�05 – 3.3E�05 – 3.8E�04 – 4.1E�04 – 5.8E�04 –
32 9.1E�06 1.2 1.0E�05 1.2 1.4E�05 1.2 2.0E�04 0.9 2.3E�04 0.9 3.2E�04 0.9
64 4.0E�06 1.2 4.4E�06 1.2 6.2E�06 1.2 1.1E�04 0.9 1.2E�04 0.9 1.7E�04 0.9
128 1.9E�06 1.1 2.1E�06 1.1 3.0E�06 1.1 5.8E�05 0.9 6.5E�05 0.9 9.2E�05 0.9

y-vel-dust
16 5.2E�04 – 5.8E�04 – 8.1E�04 –
32 2.9E�04 0.9 3.2E�04 0.9 4.5E�04 0.8
64 1.5E�04 0.9 1.7E�04 0.9 2.4E�04 0.9
128 8.2E�05 0.9 9.1E�05 0.9 1.3E�04 0.9
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where X is the angular velocity of the shearing sheet, vk ¼ Xr is the azimuthal velocity at radial distance r, and g is a dimen-
sionless parameter expressing the strength of the radial pressure gradient with respect to the centrifugal force. The source
term for the dust fluid is modified in an analogous way, except that in this case we set g ¼ 0. Finally, the particle equations of
motion are also modified, namely Eq. (4) now reads
dvd

dt
¼ x � vd � jd ðvd � ugÞ; x ¼

0 2 0
� 1

2 0 0
0 0 0

0B@
1CA: ð108Þ
In principle the y-component of the particles position should also be modified, but this is irrelevant due to the azimuthal
symmetry of the system.

In order to perform the test, the gas and dust velocities are initialized to the equilibrium solution given by Nakagawa et al.
[22] (or Eq. (7) in YJ05). Gas density and pressure are set according to



Table 13
Convergence rates: case: L ¼ 1:4� 10�2;k ¼ ð2;1Þ=

ffiffiffi
5
p

;qd=qg ¼ 1.

Ncells L1 R1 L2 R2 L1 R1 L1 R1 L2 R2 L1 R1

density-gas x-vel-gas
16 3.2E�05 – 3.5E�05 – 4.9E�05 – 4.3E�05 – 4.8E�05 – 6.7E�05 –
32 8.1E�06 2.0 9.0E�06 2.0 1.3E�05 1.9 4.4E�05 �0.0 4.9E�05 �0.0 6.9E�05 �0.0
64 1.6E�05 �1.0 1.8E�05 �1.0 2.5E�05 �1.0 4.3E�05 0.0 4.8E�05 0.0 6.8E�05 0.0
128 8.8E�06 0.9 9.7E�06 0.9 1.4E�05 0.9 1.9E�05 1.2 2.1E�05 1.2 3.0E�05 1.2

y-vel-gas pressure
16 2.6E�05 – 2.9E�05 – 4.1E�05 – 4.4E�05 – 4.9E�05 – 6.9E�05 –
32 8.1E�05 �1.6 9.0E�05 �1.6 1.3E�04 �1.6 1.1E�05 2.0 1.3E�05 2.0 1.8E�05 2.0
64 5.9E�05 0.5 6.6E�05 0.5 9.3E�05 0.5 2.2E�05 �1.0 2.5E�05 �1.0 3.5E�05 �1.0
128 2.4E�05 1.3 2.7E�05 1.3 3.8E�05 1.3 1.2E�05 0.9 1.4E�05 0.9 1.9E�05 0.9

density-dust x-vel-dust
16 1.3E�04 – 1.4E�04 – 2.0E�04 – 5.2E�05 – 5.7E�05 – 8.0E�05 –
32 1.6E�04 �0.3 1.7E�04 �0.3 2.5E�04 �0.3 4.1E�05 0.3 4.6E�05 0.3 6.5E�05 0.3
64 1.1E�04 0.6 1.2E�04 0.5 1.7E�04 0.5 4.4E�05 �0.1 4.8E�05 �0.1 6.9E�05 �0.1
128 4.4E�05 1.3 4.9E�05 1.3 7.0E�05 1.3 2.0E�05 1.2 2.2E�05 1.2 3.1E�05 1.2

y-vel-dust
16 1.8E�04 – 2.0E�04 – 2.8E�04 –
32 1.2E�04 0.5 1.4E�04 0.5 1.9E�04 0.5
64 6.9E�05 0.8 7.7E�05 0.8 1.1E�04 0.8
128 2.7E�05 1.4 3.0E�05 1.4 4.2E�05 1.4

Table 14
Run set.

Case j0 k qd=qg s=X

linA 0.357 (30,0,30) 3 0.4190204
linB 0.357 (6,0,6) 0.2 0.0154764
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qg ¼ 1:4; P ¼
qg

cxp
; ð109Þ
where xp � gvk=c ¼ 0:05 as in YJ05, and qd is set according to a specified dust-to-gas ratio (see below). Note that the param-
eters X; r and g need not be specified as long as one expresses time, distances and velocities in units of X�1;gr, and
gXr ¼ gvk, respectively. Finally, a perturbation unstable to streaming instability, is added to the initial equilibrium values.
YJ07 provide two sets of the eigen-modes for the perturbation amplitudes of each variable, corresponding to what they refer
to as linA and linB cases. Some basic features of these cases, including the wave vector, the dust-to-gas ratio and the normal-
ized growth rate ðs=XÞ, are summarized in Table 14, full details are provided in YJ07. The perturbations are in the radial and
vertical directions (x, z) but not in the azimuthal direction (y). The system is evolved using an isothermal equation of state.
Note that these tests are basically in the non-stiff regime, as kg;dDt 6 0:1.

In Fig. 3 we report the simulated growth rate of the instability, for both gas and dust variables, as a function of the res-
olution expressed in number of cells per perturbation wavelength. The top and bottom panels correspond to case linA and
linB, respectively, and open and filled dots refer to the two-fluid and hybrid algorithm, respectively. With respect to the hy-
brid algorithm, we always employ 16 particles per cell and a TSC interpolation scheme.

As for the linA case, the test indicates that for both the two-fluid and hybrid algorithms, at least 32 cells per wavelength
are required in order to capture the instability growth for all variables and convergence to the analytic solution is basically
achieved with 64 cells per wavelength. The linB case is much more challenging and now at least 128 cells per wavelength are
necessary in order to capture the instability. Note so that because the gas–dust coupling is non-stiff, we do not expect any
particular advantage of our scheme with respect to other second order schemes. In fact, our results are comparable to those
of Balsara et al. [1], who use an approach based on a second order Godunov’s method, and less accurate then those in YJ05,
who instead use a sixth order spectral method.

7. Discussion and summary

We have presented a stable and convergent method for studying a system of gas and dust coupled through viscous drag in
both non-stiff and stiff regimes.

Our approach consists of updating the fluid quantities using a two-fluid model and then using the updated fluid solution
to advance the individual particle solutions with a self-consistent time evolution of the gas velocity in the estimate of the
drag force.



Fig. 3. Growth rate of the simulated streaming instability, for both gas and dust variables, as a function of the number of cells per perturbation wavelength.
The top and bottom panels correspond to case linA and linB, respectively, and open and filled dots refer to the two-fluid and hybrid algorithm, respectively.
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In our derivation of the two-fluid method, we first obtain a fluid description of the dust component using a particle–mesh
method, and then we study the modified gas–dust hyperbolic system following the approach in Miniati and Colella [19].
Based on this analysis we formulate a predictor step providing first order accurate reconstruction of the time-averaged state
variables at cell interfaces, whence a second order accurate estimates of the conservative fluxes can be obtained. Finally, for
the time-discretization for the source terms we use a single-step, second order accurate scheme derived from the a-QSS
method proposed by Mott et al. [21]. This completes the description of our two-fluid method.

The fluid description of the dust component Eqs. (23) and (24) assumes the simplest type of closure which neglects dis-
persion velocity terms in the momentum equation. However, since the particle distribution is known, different and more
suitable closures can be constructed according to the specifics of the aimed application. This is relevant when the dust–
gas coupling is stiff and the dust backreaction is important, e.g. high dust density and large dust grain size [13], because
in this case the gas tends to follow the dust and the anisotropic particle motions may not be quickly damped.

In order to advance the individual particle solutions we use the fluid solution to determine the time dependence of the
gas velocity entering the drag terms. This allows us to derive a particle integration scheme, also based on the a-QSS method,
which is second order accurate regardless of the strength of dust–gas coupling.

Remarkably, the particle method that we employ contains no explicit term arising from the stiff coupling of the particle
component, in the sense that each particle motion is integrated individually, though it effectively depends on the other par-
ticles solutions, and the scheme is essentially explicit in time, as it only involves the particle solution at time t ¼ nDt.

Note that when the dust backreaction on the gas is not important (low dust density), the particle scheme presented in
Section 2 can be used together with an unmodified Godunov’s method for the gas component. Similarly, a simpler scheme
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can be obtained in the limit jg ! 0, as the gas description of the semi-implicit two-fluid scheme in Section 3 reduces to an
ordinary explicit Godunov’s method, while the stiff solver remains unchanged for the dust component.

A set of benchmark problems show that our method is stable and convergent. In particular, the two-fluid approach is sec-
ond order accurate both in the non-stiff and stiff regimes, and drops to first order in the intermediate regime as expected
theoretically [19]. The hybrid scheme, on the other hand, is second order only in the non-stiff regime. Since, as illustrated
in the Sections 6.1 and 6.2.1, both the particle scheme and the two-fluid scheme retain their second order accuracy irrespec-
tive of the stiffness conditions, the drop in accuracy in the hybrid approach is most likely due to the difficulty of coupling the
gas and the dust fully self-consistently in the stiff regimes. At any rate, the scheme remains stable and first order convergent
even in the stiff regime.

We have also tested our code against the streaming instability problem presented in YJ05. This is a clean test and a very
relevant one for protoplanetary disk applications. However, due to the specifics of the test set up, the gas–dust coupling is
non-stiff, so that we do not expect any particular advantage of our scheme with respect to other second order schemes. In
fact, our results are comparable to those of Balsara et al. [1], who use an approach based on a second order Godunov’s meth-
od, and less accurate then those in YJ05, who instead use a sixth order spectral method.

Finally, although the present analysis focuses on the Epstein regime for the functional form of drag force, in principle
extension to the case of Stokes regime should also be possible. This would require a modification of both the Godunov pre-
dictor step and the semi-implicit scheme in Section 3.2. In addition, the present scheme can also be extended to the case of
dust particles of multiple sizes. A complication arises, however, due to the fact that one cannot straightforwardly define a
single effective dust component to which the gas is coupled via the drag force. Such complication seems inevitable and of
general character, i.e. it is not restricted to the approach presented in this paper, when the coupling is stiff and the dust back-
reaction is dynamically important. So, for a limited number of dust components of different grain size the present method
can be modified by defining an extended system in which each dust component is represented separately. This approach,
however, becomes cumbersome and expensive when the number of dust species is large, and a method for constructing
a single effective dust component should be investigated in such cases.
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Appendix A. Derivation of the a-QSS based particle scheme

We use the alpha-QSS method to integrate the following equations, describing the trajectories in phase-space of dust
particles,
dxd

dt
¼ vd; ðA:1Þ

dvd

dt
¼ �jd ðvd � ugÞ � r/; ðA:2Þ
from time t ¼ tn, when xdðtÞ ¼ xn;vdðtÞ ¼ vn
d , to t ¼ tnþ1 ¼ tn þ Dt.

Following Eq. (11) we first integrate Eq. (A.2) assuming p0 ¼ jn
d and q0 ¼ jn

dun
g �r/, which yields
~vdðtÞ ¼ vn
d þ ðun

g � vn
dÞð1� e�jn

d
tÞ � tr/: ðA:3Þ
Note that we have modified the gravitational acceleration term because, as discussed in Section 3.2, gravitational accelera-
tion is not attenuated by drag as both gas and dust are equally accelerated by it. We then obtain a first order accurate expres-
sion of the particle position by time integration of the above solution,
~xdðDtÞ ¼ xn
d þ

Z tþDt

t
ds~vdðsÞ ¼ xn

d þ Dtvn
d þ Dtðun

g � vn
dÞ 1� 1� e�jdDt

jdDt

� �
� Dt2

2
r/; ðA:4Þ
which is equivalent to Eq. (17). For the final corrector step we need to estimate the equivalent of q� and �p appearing in (12).
The expressions for q� and �p in Eqs. (13) and (14), respectively, can be obtained by assuming a linear time dependence for
these parameters. Instead for the gas velocity (which play the equivalent role of q in our case) we use the ansatz in Eq. (18)
with
Dvg � vnþ1
g � vn

g :
On the other hand, for the drag coefficients (which play the equivalent role of p in our case) we use the following averages
consistent with the prescription in Eq. (14),
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js ¼
1
2

js xn
d

� �
þ js ~xdð Þ

� �
; s ¼ d; g:
Using Eq. (18) and the above expressions for Dvg and jd;jg , we can then integrate Eq. (A.2) to obtain a time dependent solu-
tion of the dust particle velocity. Its evaluation at time tnþ1 gives the solution in Eq. (20) and its integration over a time-step
Dt gives the solution (19).
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